Limits and Potentials of Sentinel-2 for Large Scale Near-Real-Time Land-Cover Map Production

J. Inglada, O. Hagolle, G. Dedieu, J-F. Dejoux

April 2012

Outline

1 Introduction

2 Operational constraints

Product validation Data availability Atmospheric corrections

3 Proposed approaches and research directions Land cover class characterization Introducing prior knowledge Data Fusion

4 Conclusions

What S2 brings for LSNRTLCMP

 LSNRTLCMP = Large Scale Near-Real-Time Land-Cover Map Production

What S2 brings for LSNRTLCMP

- LSNRTLCMP = Large Scale Near-Real-Time Land-Cover Map Production
- Unique characteristics
 - 290 km. swath,
 - ▶ 10 to 60 m. resolution,
 - 5-day revisit cycle
 - 13 spectral bands
 - Nadir view

What S2 brings for LSNRTLCMP

- LSNRTLCMP = Large Scale Near-Real-Time Land-Cover Map Production
- Unique characteristics
 - 290 km. swath,
 - 10 to 60 m. resolution,
 - 5-day revisit cycle
 - 13 spectral bands
 - Nadir view
- ▶ Will allow the production of very accurate land-cover maps.
 - higher spatial resolutions than MODIS, SPOT and Landsat;
 - higher number of spectral bands, shorter revisit time and a wider swath than Landsat and SPOT.

J. Inglada et al.

What S2 brings for LSNRTLCMP

It is possible to envision land-cover map production systems

Sentinel-2 Preparatory Symposium

April 2012 4 / 43

What S2 brings for LSNRTLCMP

It is possible to envision land-cover map production systems

able provide updated information globally at least once a month

What S2 brings for LSNRTLCMP

It is possible to envision land-cover map production systems

- able provide updated information globally at least once a month
- the temporal dimension of the data will allow to distinguish land-cover classes with identical spectral signatures during long periods of the year

What S2 brings for LSNRTLCMP

It is possible to envision land-cover map production systems

- able provide updated information globally at least once a month
- the temporal dimension of the data will allow to distinguish land-cover classes with identical spectral signatures during long periods of the year
- the improved spatial resolution will allow to operate with smaller mapping units

What S2 brings for LSNRTLCMP

It is possible to envision land-cover map production systems

- able provide updated information globally at least once a month
- the temporal dimension of the data will allow to distinguish land-cover classes with identical spectral signatures during long periods of the year
- the improved spatial resolution will allow to operate with smaller mapping units
- the spectral richness will allow to assess and detect certain types of changes in the vegetation.

Aim of the talk

- Present our preparation activities for Venµs and Sentinel-2
 - Stress the importance of the temporal dimension
- Get feedback from audience

Aim of the talk

- Present our preparation activities for Venµs and Sentinel-2
 - Stress the importance of the temporal dimension
- Get feedback from audience
- Work done in the framework of the French Land Thematic Data Centre
 - Poster presentation by S. Cherchali et al.
- Funded by CNES under the TOSCA Program

New applications ...

... which require to closely monitor the temporal trajectory of the characteristics of land surfaces.

- real time classification
- evolving nomenclatures for the land-cover maps

Challenges

Global coverage every few days

Challenges

- Global coverage every few days
- Expectations for land cover change monitoring

Challenges

- Global coverage every few days
- Expectations for land cover change monitoring
- ► Real-time: update the land-cover maps for every new acquisition

Challenges

- Global coverage every few days
- Expectations for land cover change monitoring
- ► Real-time: update the land-cover maps for every new acquisition
- Going from this vision towards operationality, needs a closer look at the constraints which are induced by
 - the quality requirements of the final products
 - the huge amount of image data to deal with.

Example Soil work

- Main goal: improve real-time crop classification; soil work can give hints on the type of crop
- Soil map: is also interesting in itself as a product

J. Inglada et al.

What is "large scale" Examples

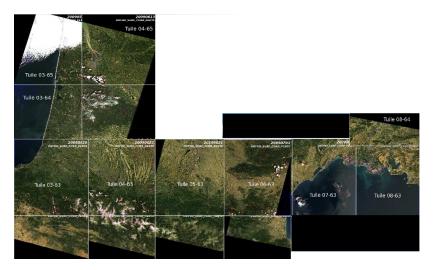
Southern France coverage

- Landsat-5 and Landsat-7 (30 m., 7 bands)
- All available images: 8-12 dates/year/pixel, 2 years
- Evolution of forests, croplands and grasslands

What is "large scale" Examples Midi-Pyrénées Region

Southern France coverage

- Landsat-5 and Landsat-7 (30 m., 7 bands)
- All available images: 8-12 dates/year/pixel, 2 years
- Evolution of forests, croplands and grasslands


- ▶ 45300 km²
- Rapid-Eye
 - 5 m., 5 bands, 1 date per pixel
- SPOT
 - 10-20 m., 4 bands, 4 dates per pixel, 91 scenes
- Land-cover classes
 - 1 Forest, Grassland,
 - Cropland, Urban, Water
 - More detailed forest and

Sentinel-2 Preparatory Symposium April 2012

oril 2012 9 / 43

Landsat

Sentinel-2 Preparatory Symposium

April 2012 10 / 43

Midi-Pyrenées region Rapid Eye

Midi-Pyrenées region Rapid Eye

Midi-Pyrenées region Rapid Eye

Sentinel-2 Preparatory Symposium

April 2012 11 / 43

Midi-Pyrenées region Rapid Eye

What is "near-real-time"

Update the land-cover maps for every new available acquisition

Sentinel-2 Preparatory Symposium

April 2012 12 / 43

- Update the land-cover maps for every new available acquisition
- Class change detection
 - stable set of classes

- Update the land-cover maps for every new available acquisition
- Class change detection
 - stable set of classes
- Evolving nomenclatures
 - Example for croplands
 - inter-crop

- Update the land-cover maps for every new available acquisition
- Class change detection
 - stable set of classes
- Evolving nomenclatures
 - Example for croplands
 - inter-crop \rightarrow bare soil

- Update the land-cover maps for every new available acquisition
- Class change detection
 - stable set of classes
- Evolving nomenclatures
 - Example for croplands
 - inter-crop \rightarrow bare soil \rightarrow ploughing

What is "near-real-time"

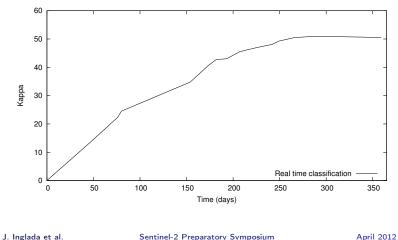
- Update the land-cover maps for every new available acquisition
- Class change detection
 - stable set of classes
- Evolving nomenclatures
 - Example for croplands
 - ▶ inter-crop → bare soil → ploughing → sowing preparation

What is "near-real-time"

- Update the land-cover maps for every new available acquisition
- Class change detection
 - stable set of classes
- Evolving nomenclatures
 - Example for croplands
 - ▶ inter-crop → bare soil → ploughing → sowing preparation → Summer crop

What is "near-real-time"

- Update the land-cover maps for every new available acquisition
- Class change detection
 - stable set of classes
- Evolving nomenclatures
 - Example for croplands
 - inter-crop → bare soil → ploughing → sowing preparation →
 Summer crop → irrigated Summer crop


What is "near-real-time"

- Update the land-cover maps for every new available acquisition
- Class change detection
 - stable set of classes
- Evolving nomenclatures
 - Example for croplands
 - inter-crop → bare soil → ploughing → sowing preparation →
 Summer crop → irrigated Summer crop → corn

Real-time land-cover maps Example

Classification accuracy increases with new available images

SRID

April 2012 13 / 43

Operational constraints

Outline

1 Introduction

2 Operational constraints

Product validation Data availability Atmospheric corrections

3 Proposed approaches and research directions Land cover class characterization Introducing prior knowledge Data Fusion

4 Conclusions

Outline

1 Introduction

2 Operational constraints Product validation

Data availability Atmospheric corrections

3 Proposed approaches and research directions Land cover class characterization Introducing prior knowledge Data Fusion

4 Conclusions

The land-cover maps produced by such a system will have to undergo a validation at the regional scale

- The land-cover maps produced by such a system will have to undergo a validation at the regional scale
- No reference data (ground truth) will be available in a sufficient amount for the design and the validation of the processing chains

- The land-cover maps produced by such a system will have to undergo a validation at the regional scale
- No reference data (ground truth) will be available in a sufficient amount for the design and the validation of the processing chains
- Only methods based on physical knowledge or unsupervised approaches can be used

- The land-cover maps produced by such a system will have to undergo a validation at the regional scale
- No reference data (ground truth) will be available in a sufficient amount for the design and the validation of the processing chains
- Only methods based on physical knowledge or unsupervised approaches can be used
- In this context, being able to exploit prior knowledge as well as ancillary data will be crucial

Difference wrt biopars

- Biopars are produced by models
- > If your data is well corrected, you know the error bars

Difference wrt biopars

- Biopars are produced by models
- > If your data is well corrected, you know the error bars
- Land-cover
 - Same thematic class can have different behaviors in different areas

Difference wrt biopars

- Biopars are produced by models
- If your data is well corrected, you know the error bars
- Land-cover
 - Same thematic class can have different behaviors in different areas
 - altitude, aspect, etc.
 - agricultural practices

Outline

1 Introduction

2 Operational constraints Product validation Data availability Atmospheric corrections

3 Proposed approaches and research directions Land cover class characterization Introducing prior knowledge Data Fusion

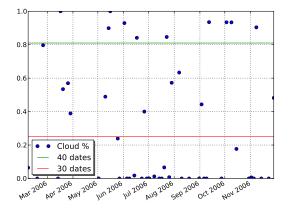
4 Conclusions

Data availability

The theoretical acquisition capabilities of the system are very well suited for this kind of application

Data availability

- The theoretical acquisition capabilities of the system are very well suited for this kind of application
- Possible limitations to data access:
 - cloud cover,
 - system downtime,
 - etc.



Data availability

- The theoretical acquisition capabilities of the system are very well suited for this kind of application
- Possible limitations to data access:
 - cloud cover,
 - system downtime,
 - etc.
- Land-cover map production system will have to be robust to spatially localized temporal data gaps.

Cloud cover

Missing data

 Landsat NDVI monthly means over a 100 km × 100 km area in South-West France (11 random pixels)

Sentinel-2 Preparatory Symposium

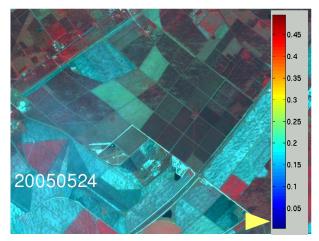
Missing data

 Landsat NDVI monthly means over a 100 km × 100 km area in South-West France (11 random pixels)

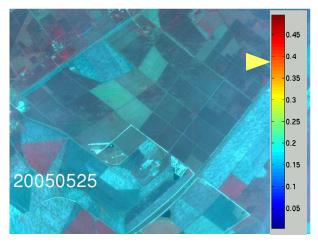
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
?	?	?	0.740	?	?	?	0.789	?	?	?	?
?	?	0.777	?	?	?	0.885	?	?	?	?	?
?	?	0.657	?	?	?	0.567	?	0.480	?	?	?
?	?	0.338	0.377	?	?	0.450	?	0.738	?	?	?
?	0.738	0.755	?	?	?	0.681	?	0.583	?	0.800	0.681
?	0.541	0.607	?	?	?	0.889	?	0.805	?	?	0.530
?	0.548	0.539	?	0.780	?	0.841	?	0.729	?	?	0.648
?	0.461	0.477	?	0.309	?	?	?	0.516	?	0.358	0.338
?	0.528	0.607	?	?	?	0.710	?	0.820	?	0.659	0.593
?	0.858	0.856	0.807	?	?	0.546	?	0.226	?	0.771	0.866
?	0.463	0.554	?	0.567	?	?	?	0.695	?	?	0.581

Outline

1 Introduction

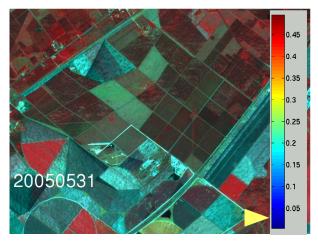

2 Operational constraints

Product validation Data availability Atmospheric corrections


3 Proposed approaches and research directions Land cover class characterization Introducing prior knowledge Data Fusion

4 Conclusions





Importance of atmospheric corrections

Sentinel-2 Preparatory Symposium

Importance of atmospheric corrections

Sentinel-2 Preparatory Symposium

Importance of atmospheric corrections

Sentinel-2 Preparatory Symposium

Proposed approaches and research directions

Outline

1 Introduction

2 Operational constraints

Product validation Data availability Atmospheric corrections

3 Proposed approaches and research directions Land cover class characterization Introducing prior knowledge Data Fusion

4 Conclusions

Proposed approaches and research directions

Main methodological challenges

How to represent the land cover classes with a small subset of samples, even for very large areas?

Sentinel-2 Preparatory Symposium

April 2012 25 / 43

Main methodological challenges

- How to represent the land cover classes with a small subset of samples, even for very large areas?
- How to integrate available ancillary data (DEM, maps) in order to take into account the variability of the same land-cover class across different landscapes?

Sentinel-2 Preparatory Symposium

Main methodological challenges

- How to represent the land cover classes with a small subset of samples, even for very large areas?
- 2 How to integrate available **ancillary data** (DEM, maps) in order to take into account the variability of the same land-cover class across different landscapes?
- **3** How to integrate **physical models** (mostly for vegetation) into the land-cover map production process?

Sentinel-2 Preparatory Symposium

Main methodological challenges

- How to represent the land cover classes with a small subset of samples, even for very large areas?
- 2 How to integrate available **ancillary data** (DEM, maps) in order to take into account the variability of the same land-cover class across different landscapes?
- **3** How to integrate **physical models** (mostly for vegetation) into the land-cover map production process?
- How to take into account existing prior knowledge, as for instance the crop rotation practices in agricultural areas?

Outline

1 Introduction

2 Operational constraints

Product validation Data availability Atmospheric corrections

3 Proposed approaches and research directions Land cover class characterization Introducing prior knowledge Data Eusion

4 Conclusions

Spectral descriptors

Can be used for preliminary classification:

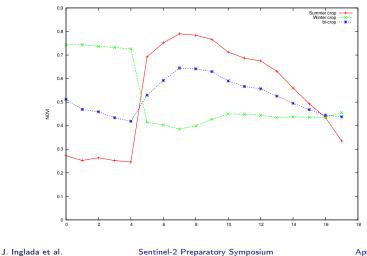
• Brightness = $\frac{1}{8}(TM1 + TM2 + 2 * TM3 + 2 * TM4 + TM5 + TM7)$

• Visible =
$$\frac{1}{3}(TM1 + TM2 + TM3)$$

NDVI

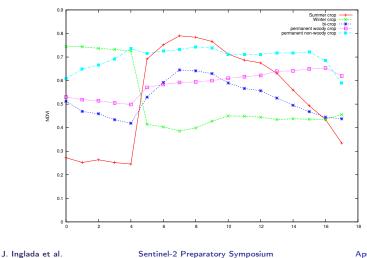
• NDBSI =
$$\frac{(TM5-TM4)}{(TM5+TM4)}$$
 for bare soils

► BIO =
$$\frac{((TM5+TM3)-(TM4+TM1))}{((TM5+TM3)+(TM4+TM1))}$$
 for forests

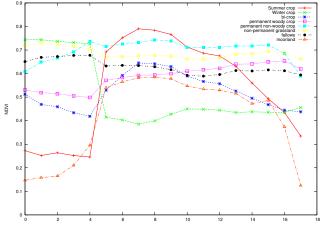

► NDSI =
$$\frac{(TM2 - TM5)}{(TM2 + TM5)}$$
 for snow

▶ NDBBBI =
$$\frac{(TM1 - TM5)}{(TM1 + TM5)}$$
 for bare soil and built up

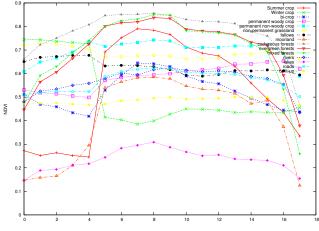
Baraldi, A.; Puzzolo, V.; Blonda, P.; Bruzzone, L.; Tarantino, C.; , "Automatic Spectral Rule-Based Preliminary Mapping of Calibrated Landsat TM and ETM+ Images," Geoscience and Remote Sensing, IEEE Transactions on , vol.44, no.9, pp.2563-2586, Sept. 2006

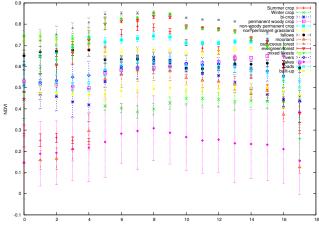


Temporal descriptors NDVI time profiles



ESBID


April 2012 28 / 43

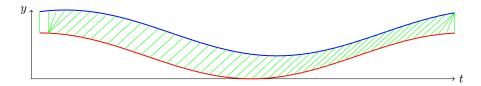

ESBID

Specific for vegetation: phenological descriptors

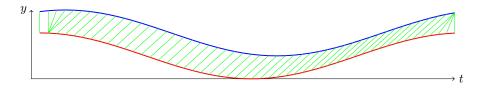
Sentinel-2 Preparatory Symposium

- Specific for vegetation: phenological descriptors
- Regular vs. irregular time sampling

- Specific for vegetation: phenological descriptors
- Regular vs. irregular time sampling
- Differential: rate of change


- Specific for vegetation: phenological descriptors
- Regular vs. irregular time sampling
- Differential: rate of change
- What is the temporal axis?
 - days
 - sum of temperatures

- Specific for vegetation: phenological descriptors
- Regular vs. irregular time sampling
- Differential: rate of change
- What is the temporal axis?
 - days
 - sum of temperatures
- Generic descriptors which can be compared across geographical areas and temporal periods

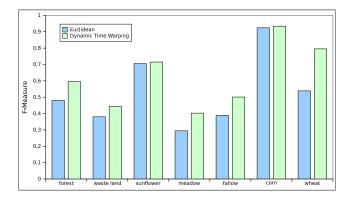


Multi-annual comparisons

Multi-annual comparisons

$$D(A_i, B_j) = \delta(a_i, b_j) + \min \begin{cases} D(A_{i-1}, B_{j-1}), \\ D(A_i, B_{j-1}), \\ D(A_{i-1}, B_j) \end{cases}$$

📒 Petitiean. F.; Inglada. J.; Gançarski, P.; , "Satellite Image Time Series Analysis Under Time Warping," Geoscience and Remote Sensing, IEEE Transactions on , in press. doi: 10.1109/TGRS.2011.2179050 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=arnumber=6144005isnumber=4358825


Land cover class characterization

Missing data

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
?	?	?	0.740	?	?	?	0.789	?	?	?	?
?	?	0.777	?	?	?	0.885	?	?	?	?	?
?	?	0.657	?	?	?	0.567	?	0.480	?	?	?
?	?	0.338	0.377	?	?	0.450	?	0.738	?	?	?
?	0.738	0.755	?	?	?	0.681	?	0.583	?	0.800	0.681
?	0.541	0.607	?	?	?	0.889	?	0.805	?	?	0.530
?	0.548	0.539	?	0.780	?	0.841	?	0.729	?	?	0.648
?	0.461	0.477	?	0.309	?	?	?	0.516	?	0.358	0.338
?	0.528	0.607	?	?	?	0.710	?	0.820	?	0.659	0.593
?	0.858	0.856	0.807	?	?	0.546	?	0.226	?	0.771	0.866
?	0.463	0.554	?	0.567	?	?	?	0.695	?	?	0.581

Missing data

Spatial sampling

Do we really need to process all the pixels every 5 days?

Sentinel-2 Preparatory Symposium

April 2012 33 / 43

Spatial sampling

- ► Do we really need to process all the pixels every 5 days?
- Which pixels are really interesting
 - change detection
 - specific classes

Spatial sampling

- Do we really need to process all the pixels every 5 days?
- Which pixels are really interesting
 - change detection
 - specific classes
- Use ancillary data for stratified sampling
- SAMPLING STRATEGIES FOR UNSUPERVISED CLASSIFICATION OF MULTITEMPORAL HIGH RESOLUTION OPTICAL IMAGES OVER VERY LARGE AREAS'. Isabel Rodes, Jordi Inglada, Jean-François Dejoux, Olivier Hagolle, Gérard Dedieu. To be presented at IGARSS 2012.

Outline

1 Introduction

2 Operational constraints

Product validation Data availability Atmospheric corrections

3 Proposed approaches and research directions Land cover class characterization Introducing prior knowledge Data Fusion

4 Conclusions

Qualitative knowledge

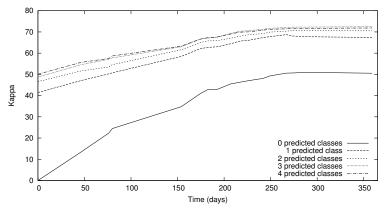
Agricultural practices:

- field management
- crop rotations
- irrigation

Qualitative knowledge

Agricultural practices:

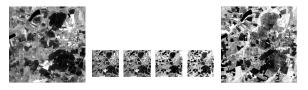
- field management
- crop rotations
- irrigation
- Legal and economic constraints:
 - inter-crops (nitrate directive),
 - forest fire prevention practices


Quantitative knowledge

- Physical models: Hydro, météo, agri, SVAT, forest, popdyn
- Ancillary data
 - DEM, soil maps,
 - Historical land-cover maps
 - Specific data-bases: crop declarations,

Example: Crop rotations

 Using the knowledge about past seasons in order to predict the most likely crop classes.


Outline

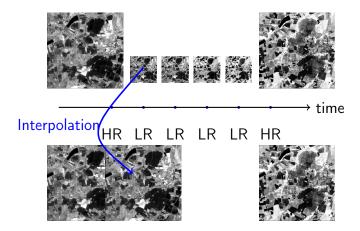
Product validation

3 Proposed approaches and research directions

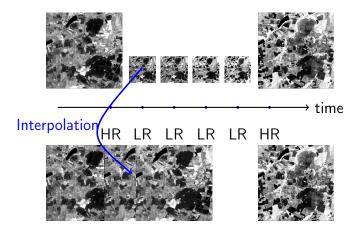
Introducing prior knowledge Data Fusion

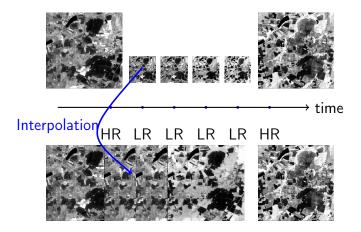
→ time

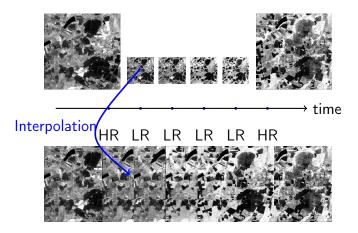
HR LR LR LR HR

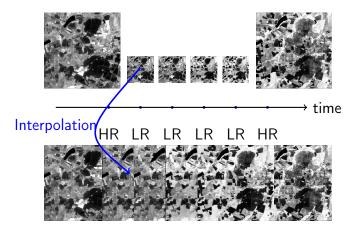

→ time

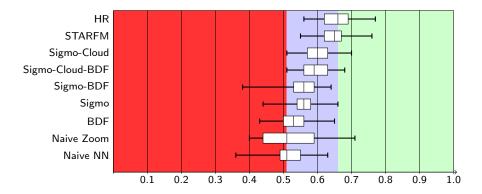
HR LR LR LR HR











Nearest neighbor vs. bi-cubic interpolation

J. Inglada et al.

Algorithm comparison

Comparison of the different algorithms using synthetic Sentinel2 (10m) and PROBA-V (330m) images.

Outline

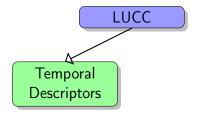
1 Introduction

2 Operational constraints

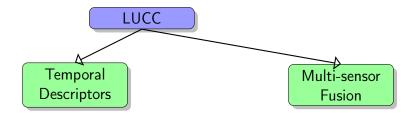
Product validation Data availability Atmospheric corrections

3 Proposed approaches and research directions Land cover class characterization Introducing prior knowledge Data Fusion

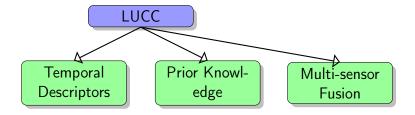
4 Conclusions


A research program

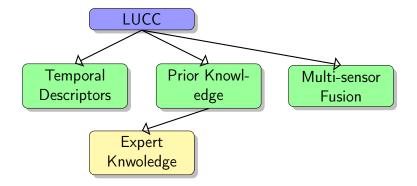
Sentinel-2 Preparatory Symposium


A research program

Sentinel-2 Preparatory Symposium


A research program

Sentinel-2 Preparatory Symposium


A research program


Sentinel-2 Preparatory Symposium

A research program

A research program

Creative Commons Attribution-ShareAlike 3.0 Unported License

